
1

Code Generation

Part II

Chapter 9

2

Flow Graphs

• A flow graph is a graphical depiction of a

sequence of instructions with control flow

edges

• A flow graph can be defined at the

intermediate code level or target code level

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

MOV 0,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

3

Basic Blocks

• A basic block is a sequence of consecutive

instructions with exactly one entry point

and one exit point (with natural flow or a

branch instruction)
MOV 1,R0

MOV n,R1

JMP L2MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

4

Basic Blocks and Control Flow

Graphs

• A control flow graph (CFG) is a directed

graph with basic blocks Bi as vertices and

with edges BiBj iff Bj can be executed

immediately after Bi
MOV 1,R0

MOV n,R1

JMP L2MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

5

Successor and Predecessor

Blocks

• Suppose the CFG has an edge B1B2

– Basic block B1 is a predecessor of B2

– Basic block B2 is a successor of B1

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

6

Partition Algorithm for Basic

Blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement

in exactly one block

1. Determine the set of leaders, the first statements if basic blocks

a) The first statement is the leader

b) Any statement that is the target of a goto is a leader

c) Any statement that immediately follows a goto is a leader

2. For each leader, its basic block consist of the leader and all

statements up to but not including the next leader or the end

of the program

7

Loops

• A loop is a collection of basic blocks, such

that

– All blocks in the collection are strongly
connected

– The collection has a unique entry, and the only

way to reach a block in the loop is through the

entry

8

Loops (Example)

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

B1:

B2:

B3:

L3: ADD 2,R2

SUB 1,R0

JMPNZ R0,L3

B4:

Strongly connected

components:

SCC={{B2,B3},

{B4} }

Entries:

B3, B4

9

Equivalence of Basic Blocks

• Two basic blocks are (semantically)

equivalent if they compute the same set of

expressions

b := 0

t1 := a + b

t2 := c * t1

a := t2
a := c * a

b := 0

a := c*a

b := 0

a := c*a

b := 0

Blocks are equivalent, assuming t1 and t2 are dead: no longer used (no longer live)

10

Transformations on Basic Blocks

• A code-improving transformation is a code
optimization to improve speed or reduce code size

• Global transformations are performed across basic
blocks

• Local transformations are only performed on
single basic blocks

• Transformations must be safe and preserve the
meaning of the code

– A local transformation is safe if the transformed basic
block is guaranteed to be equivalent to its original form

11

Common-Subexpression

Elimination

a := b + c

b := a - d

c := b + c

d := a - d

a := b + c

b := a - d

c := b + c

d := b

t1 := b * c

t2 := a - t1

t3 := b * c

t4 := t2 + t3

t1 := b * c

t2 := a - t1

t4 := t2 + t1

• Remove redundant computations

12

Dead Code Elimination

• Remove unused statements

b := a + 1

a := b + c

…

b := a + 1

…

Assuming a is dead (not used)

b := x + y

…

if true goto L2

Remove unreachable code

13

Renaming Temporary Variables

• Temporary variables that are dead at the end

of a block can be safely renamed

t1 := b + c

t2 := a - t1

t1 := t1 * d

d := t2 + t1

t1 := b + c

t2 := a - t1

t3 := t1 * d

d := t2 + t3

Normal-form block

14

Interchange of Statements

• Independent statements can be reordered

t1 := b + c

t2 := a - t1

t3 := t1 * d

d := t2 + t3

t1 := b + c

t3 := t1 * d

t2 := a - t1

d := t2 + t3

Note that normal-form blocks permit all

statement interchanges that are possible

15

Algebraic Transformations

• Change arithmetic operations to transform

blocks to algebraic equivalent forms

t1 := a - a

t2 := b + t1

t3 := 2 * t2

t1 := 0

t2 := b

t3 := t2 << 1

16

Next-Use

• Next-use information is needed for dead-code

elimination and register assignment

• Next-use is computed by a backward scan of a

basic block and performing the following actions

on statement

i: x := y op z

– Add liveness/next-use info on x, y, and z to statement i

– Set x to “not live” and “no next use”

– Set y and z to “live” and the next uses of y and z to i

17

Next-Use (Step 1)

i: a := b + c

j: t := a + b [live(a) = true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

Attach current live/next-use information

Because info is empty, assume variables are live

(Data flow analysis Ch.10 can provide accurate information)

18

Next-Use (Step 2)

i: a := b + c

j: t := a + b [live(a) = true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

live(a) = true nextuse(a) = j

live(b) = true nextuse(b) = j

live(t) = false nextuse(t) = none

Compute live/next-use information at j

19

Next-Use (Step 3)

i: a := b + c

j: t := a + b [live(a) = true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

Attach current live/next-use information to i

[live(a) = true, live(b) = true, live(c) = false,

nextuse(a) = j, nextuse(b) = j, nextuse(c) = none]

20

Next-Use (Step 4)

i: a := b + c

j: t := a + b

live(a) = false nextuse(a) = none

live(b) = true nextuse(b) = i

live(c) = true nextuse(c) = i

live(t) = false nextuse(t) = none

[live(a) = false, live(b) = false, live(t) = false,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

[live(a) = true, live(b) = true, live(c) = false,

nextuse(a) = j, nextuse(b) = j, nextuse(c) = none]

Compute live/next-use information i

21

A Code Generator

• Generates target code for a sequence of three-
address statements using next-use information

• Uses new function getreg to assign registers to
variables

• Computed results are kept in registers as long as
possible, which means:

– Result is needed in another computation

– Register is kept up to a procedure call or end of block

• Checks if operands to three-address code are
available in registers

22

The Code Generation Algorithm

• For each statement x := y op z
1. Set location L = getreg(y, z)

2. If y  L then generate
MOV y’,L

where y’ denotes one of the locations where the value
of y is available (choose register if possible)

3. Generate
OP z’,L

where z’ is one of the locations of z;
Update register/address descriptor of x to include L

4. If y and/or z has no next use and is stored in register,
update register descriptors to remove y and/or z

23

Register and Address Descriptors

• A register descriptor keeps track of what is
currently stored in a register at a particular point in
the code, e.g. a local variable, argument, global
variable, etc.

MOV a,R0 “R0 contains a”

• An address descriptor keeps track of the location
where the current value of the name can be found
at run time, e.g. a register, stack location, memory
address, etc.

MOV a,R0

MOV R0,R1 “a in R0 and R1”

24

The getreg Algorithm

• To compute getreg(y,z)

1. If y is stored in a register R and R only holds the
value y, and y has no next use, then return R;
Update address descriptor: value y no longer in R

2. Else, return a new empty register if available

3. Else, find an occupied register R;
Store contents (register spill) by generating

MOV R,M
for every M in address descriptor of y;
Return register R

4. Return a memory location

25

Code Generation Example

Statements Code Generated
Register

Descriptor

Address

Descriptor

t := a - b

u := a - c

v := t + u

d := v + u

MOV a,R0

SUB b,R0

MOV a,R1

SUB c,R1

ADD R1,R0

ADD R1,R0

MOV R0,d

Registers empty

R0 contains t

R0 contains t

R1 contains u

R0 contains v

R1 contains u

R0 contains d

t in R0

t in R0

u in R1

u in R1

v in R0

d in R0

d in R0 and

memory

26

Register Allocation and

Assignment

• The getreg algorithm is simple but sub-optimal

– All live variables in registers are stored (flushed) at the

end of a block

• Global register allocation assigns variables to

limited number of available registers and attempts

to keep these registers consistent across basic

block boundaries

– Keeping variables in registers in looping code can

result in big savings

27

Allocating Registers in Loops

• Suppose loading a variable x has a cost of 2

• Suppose storing a variable x has a cost of 2

• Benefit of allocating a register to a variable
x within a loop L is
BL (use(x, B) + 2 live(x, B))

where use(x, B) is the number of times x is
used in B and live(x, B) = true if x is live on
exit from B

28

Global Register Allocation Using

Graph Coloring

• When a register is needed but all available

registers are in use, the content of one of the used

registers must be stored (spilled) to free a register

• Graph coloring allocates registers and attempts to

minimize the cost of spills

• Build a conflict graph (interference graph)

• Find a k-coloring for the graph, with k the number

of registers

29

Graph Coloring Example

30

Peephole Optimization

• Examines a short sequence of target instructions in
a window (peephole) and replaces the instructions
by a faster and/or shorter sequence when possible

• Applied to intermediate code or target code

• Typical optimizations:

– Redundant instruction elimination

– Flow-of-control optimizations

– Algebraic simplifications

– Use of machine idioms

31

Peephole Opt: Eliminating

Redundant Loads and Stores

• Consider
MOV R0,a

MOV a,R0

• The second instruction can be deleted, but only if

it is not labeled with a target label

– Peephole represents sequence of instructions with at

most one entry point

• The first instruction can also be deleted if
live(a)=false

32

Peephole Optimization: Deleting

Unreachable Code

• Unlabeled blocks can be removed

b := x + y

…

goto L2

b := x + y

…

if 0==0 goto L2

33

Peephole Optimization: Branch

Chaining

• Shorten chain of branches by modifying

target labels

b := x + y

…

if a==0 goto L2

L2: goto L3

b := x + y

…

if a==0 goto L3

L2: goto L3

34

Peephole Optimization: Other

Flow-of-Control Optimizations

• Remove redundant jumps

L1:

…

…

goto L1

…

35

Other Peephole Optimizations

• Reduction in strength: replace expensive
arithmetic operations with cheaper ones

• Utilize machine idioms

• Algebraic simplifications

…

a := x ^ 2

b := y / 8

…

a := x * x

b := y >> 3

…

a := a + 1

…

inc a

…

a := a + 0

b := b * 1

…

