Code Generation
Part I1

Chapter 9

Flow Graphs

* A flow graphis a graphical depiction of a
sequence of instructions with control flow
edges

* A flow graph can be defined at the
intermediate code level or target code level

MOV 1,R0 MOV 0,RO
MOV n,R1 MOV n,R1

JMP L2 JMP L2
L1l: MUL 2,R0 Ll: MUL 2,R0
SUB 1,R1 SUB 1,R1
L2: JMPNZ R1,L1 L2: JMPNZ R1,L1

Basic Blocks

* A basic block 1s a sequence of consecutive
instructions with exactly one entry point
and one exit point (with natural flow or a
branch instruction)

MOV 1,R0
MOV n,R1
MOV 1,RO JMP L2
MOV n,R1
JMP L2 L1l: MUL 2,R0
L1l: MUL 2,R0 SUB 1 R1
SUB 1,R1
L2: JMPNZ R1,Ll
L2: JMPNZ R1,Ll

Basic Blocks and Control Flow
Graphs

* A control flow graph (CFQG) 1s a directed
graph with basic blocks B;as vertices and
with edges B— B;itt B;can be executed
immediately after B,

MOV 1,R0
MOV n,R1
MOV 1,RO JMP L2
MOV n,R1
JMP L2 L1l: MUL 2,R0
L1l: MUL 2,R0 SUB 1 R1
SUB 1,R1
L2: JMPNZ R1,Ll v
L2: JMPNZ R1,Ll

v

Successor and Predecessor
Blocks

* Suppose the CFG has an edge B,— B,

— Basic block B, 1s a predecessor of B,
— Basic block B, 1s a successor of B,

MOV 1,R0
MOV n,R1l
JMP L2

L1l: MUL 2,R0
SUB 1,R1

v

L2: JMPNZ R1,L1

v

Partition Algorithm for Basic
Blocks

Input. A sequence of three-address statements
Output. A list of basic blocks with each three-address statement
in exactly one block

1. Determine the set of /eaders, the first statements 1f basic blocks
a) The first statement 1s the leader
b) Any statement that is the target of a goto 1s a leader
c) Any statement that immediately follows a goto is a leader
2. For each leader, its basic block consist of the leader and all
statements up to but not including the next leader or the end
of the program

Loops

* A Joop s a collection of basic blocks, such
that

— All blocks 1n the collection are strongly
connected

— The collection has a unique entry, and the only
way to reach a block in the loop 1s through the
entry

B1:

B2:

B3:

B4:

Loops (Example)

MOV 1,R0
MOV n,R1l
JMP 1.2

Ll1:

MUL 2,R0O
SUB 1,R1

v

L2:

JMPNZ R1,L1

v

L3:

ADD 2,R2
SUB 1,R0
JMPNZ RO,L3

|

Strongly connected
components:

SCC={ {B2,B3},
{B4} }

Entries:
B3, B4

Equivalence of Basic Blocks

* Two basic blocks are (semantically)
equivalent 1f they compute the same set of

€Xpressions
b :=0
tl :=a +b
t2 :=c * tl a =c * a
a := t2 b =0
a := c*a a := c*a
b :=0 b :=20

Blocks are equivalent, assuming t1 and t2 are dead: no longer used (no longer /ive)

Transformations on Basic Blocks

* A code-improving transformationis a code
optimization to improve speed or reduce code size

* Global transformations are performed across basic
blocks

» Local transformations are only performed on
single basic blocks

» Transformations must be safe and preserve the
meaning of the code

— A local transformation is safe if the transformed basic
block 1s guaranteed to be equivalent to its original form

10

Common-Subexpression

Elimination

 Remove redundant computations

a :=b + c
b :=a-d
c :=b + c
d :=a -d
tl :=b * c
t2 := a - tl
t3 :=b * c
td = t2 + t3

=

=

a :=b + c

b :=a-4d

c :=b + c

d :=Db

tl :=b * ¢
t2 :=a - tl
td = t2 + tl1

11

Dead Code Elimination

e Remove unused statements

1
c

a +
b +

j> b :=a + 1

Assuming a 1s dead (not used)

if true goto L2

v

b :=x+y

Remove unreachable code

12

Renaming Temporary Variables

« Temporary variables that are dead at the end
of a block can be safely renamed

tl :=b + c tl := b + c
t2 := a - tl t2 := a - tl
tl :=t1 * d t3 = tl1 * d
d := t2 + tl d := t2 + t3

Normal-form block

Interchange of Statements

* Independent statements can be reordered

tl :=b + c tl := b + c
t2 := a - tl t3 = tl1 * d
t3 :=t1 * d t2 := a - tl
d := t2 + t3 d := t2 + t3

Note that normal-form blocks permit all
statement interchanges that are possible

14

Algebraic Transformations

* Change arithmetic operations to transform
blocks to algebraic equivalent forms

tl := a - a tl := 0
t2 := Db + tl t2 := Db
t3 =2 * t2 t3 = t2 1

Next-Use

» Next-use information is needed for dead-code
elimination and register assignment

« Next-use 1s computed by a backward scan of a

basic block and performing the following actions
on statement

LX:=YyopZz
— Add liveness/next-use info on x, y, and zto statement 7
— Set x to “not live” and “no next use”

— Set yand zto “live” and the next uses of yand zto 1

16

17

Next-Use (Step 1)

I
o

+ C

:= a + b [live(a) =true, live(b) = true, /ive(t) = true,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Attach current live/next-use information
Because info 1s empty, assume variables are live
(Data flow analysis Ch.10 can provide accurate information)

18

Next-Use (Step 2)

I a :=b+ c |[fjv(a)=true nextusea)=J
l1ve(b) = true nextuse(b) = j
/ Iive(t) = false nextuse(t) = none
J- t := a + b [live(a)=true, live(b) = true, live(t) = true,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Compute live/next-use information at ;

19

Next-Use (Step 3)

:= b + c [live(a) =true, live(b) = true, /ive(c) = false,
nextuse(a) = J, nextuse(b) = j, nextuse(c) = none |

:= a + b [live(a) =true, live(b) = true, /ive(t) = true,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Attach current live/next-use information to 7

I a

J ot

20

Next-Use (Step 4)

live(a) =false nextuse(a) = none
l1ve(b) = true nextuse(b) =1

live(c) = true nextuse(c) =1
/ live(t) = false nextuse(t) = none
:= b + c [live(a) =true, live(b) = true, /ive(c) = false,
nextuse(a) = J, nextuse(b) = j, nextuse(c) = none |

:= a + b [live(a) = false, /ive(b) = false, /ive(t) = false,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Compute live/next-use information 7

A Code Generator

Generates target code for a sequence of three-
address statements using next-use information

Uses new function getreg to assign registers to
variables

Computed results are kept in registers as long as
possible, which means:

— Result 1s needed 1n another computation

— Register 1s kept up to a procedure call or end of block

Checks 1f operands to three-address code are
available 1n registers

21

The Code Generation Algorithm

For each statement x ;= yop z
1.
2.

Set location L = getreg(y, 2)

If y ¢ L then generate

MOV y’ L
where y’ denotes one of the locations where the value
of y1s available (choose register if possible)
Generate

OP z’ L
where z’1s one of the locations of z;
Update register/address descriptor of x to include L

If yand/or zhas no next use and 1s stored 1n register,
update register descriptors to remove y and/or z

22

Register and Address Descriptors

» A register descriptorkeeps track of what 1s
currently stored 1n a register at a particular point in
the code, e.g. a local variable, argument, global
variable, etc.

MOV a,RO “RO contains a”

* An address descriptorkeeps track of the location
where the current value of the name can be found
at run time, e.g. a register, stack location, memory
address, etc.

MOV a,R0
MOV RO,R1 “amRO0 and R1”

23

24

The getreg Algorithm

 To compute getreg(y,2)

1. If yis stored in a register R and R only holds the
value y, and y has no next use, then return R;
Update address descriptor: value yno longer in R

2. Else, return a new empty register if available

3. Else, find an occupied register R;
Store contents (register spill) by generating
MOV R, M
for every M 1n address descriptor of y;
Return register R

4. Return a memory location

Code Generation Example

Register Address
Statements Code Generated &5 .
Descriptor Descriptor
Registers empty
=a-b MOV a,RO RO contains t |t in RO
SUB b,RO
= a - ¢ MOV a,Rl RO contains t |t in RO
SUB c,R1 Rl contains u |(u 1In Rl
=t + u ADD R1,RO RO contains v |u in Rl
R1 contains u |wv in RO
= v + u ADD R1,RO RO contains d |d in RO
MOV RO,d d in ROand

memory

25

Register Allocation and
Assignment

* The getregalgorithm 1s simple but sub-optimal
— All live variables 1n registers are stored (flushed) at the
end of a block
* Global register allocation assigns variables to
limited number of available registers and attempts
to keep these registers consistent across basic
block boundaries

— Keeping variables in registers in looping code can
result in big savings

26

Allocating Registers in Loops

e Suppose loading a variable x has a cost of 2
* Suppose storing a variable x has a cost of 2

* Benefit of allocating a register to a variable
x within a loop L 1s
2. (use(x, B)+ 2 live(x, B))
where use(x, B) 1s the number of times x 1s
used in Band /ive(x, B) = true 1f x 1s live on
exit from B

27

Global Register Allocation Using
Graph Coloring

* When a register 1s needed but all available
registers are 1n use, the content of one of the used
registers must be stored (spilled) to free a register

* Graph coloring allocates registers and attempts to
minimize the cost of spills

» Build a conflict graph (interference graph)

* Find a &-coloring for the graph, with & the number
of registers

28

Graph Coloring Example

29

Peephole Optimization

« Examines a short sequence of target instructions in
a window (peephole) and replaces the instructions
by a faster and/or shorter sequence when possible

« Applied to intermediate code or target code
« Typical optimizations:

— Redundant instruction elimination

— Flow-of-control optimizations

— Algebraic simplifications
— Use of machine idioms

30

Peephole Opt: Eliminating
Redundant Loads and Stores

Consider
MOV RO, a

MOV a,RO

The second instruction can be deleted, but only 1f
it 1s not labeled with a target label

— Peephole represents sequence of instructions with at
most one entry point

The first instruction can also be deleted if
l1ve(a)=talse

31

Peephole Optimization: Deleting

Unreachable Code

 Unlabeled blocks can be removed

if 0==0 goto L2

=

goto L2

Q)

32

Peephole Optimization: Branch

Chaining

» Shorten chain of branches by modifying

target labels

if a==0 goto L2

=

L2: goto L3

if a==0 goto L3

L2: goto L3

33

Peephole Optimization: Other
Flow-of-Control Optimizations

 Remove redundant jumps

;oto L1l
<)
L1:

Other Peephole Optimizations

* Reduction in strength: replace expensive
arithmetic operations with cheaper ones

a :=x N 2) a :=x * x
b :=y / 8 b :=y > 3

e Utilize machine 1dioms

a :=a +1 inc a

» Algebraic simplifications

a + 0)
b 1

a
b :

